1. Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, Campbell KP. Sarcolemma-localized nNOS is required to maintain activity after mild exercise.
Nature 2008;456:511-5. PMID:
10.1038/nature07414. PMID:
18953332.
3. Ploutz-Snyder LL, Downs M, Ryder J, Hackney K, Scott J, Buxton R, Goetchius E, Crowell B. Integrated resistance and aerobic exercise protects fitness during bed rest.
Med Sci Sports Exerc 2014;46:358-68. PMID:
10.1249/mss.0b013e3182a62f85. PMID:
24441215.
5. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.
Nat Neurosci 1999;21:266-70.
6. Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo.
Neuroscience 2004;124:71-9. PMID:
10.1016/j.neuroscience.2003.09.029. PMID:
14960340.
7. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition.
Eur J Neurosci 2004;20:2580-90. PMID:
10.1111/j.1460-9568.2004.03720.x. PMID:
15548201.
8. Thompson WR. World wide Survey of fitness trends for 2018: the CREP Edition.
ACSM’s Health & Fitness Journal 2017;21:10-9.
9. Haram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, Wisløff U. Aerobic interval training vs continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity.
Cardiovasc Res 2009;81:723-32. PMID:
19047339.
10. Holloway TM, Bloemberg D, da Silva ML, Simpson JA, Quadrilatero J, Spriet LL. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats.
PLoS One 2015;10:e0121138PMID:
10.1371/journal.pone.0121138. PMID:
25803693.
11. Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain.
Physiol Behav 2015;147:78-83. PMID:
10.1016/j.physbeh.2015.04.012. PMID:
25868740.
12. Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study.
Circulation 2007;115:3086-94. PMID:
17548726.
13. Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis.
J Cardiopulm Rehabil Prev 2011;31:378-85. PMID:
21946419.
14. Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain.
Exerc Sport Sci Rev 2008;36:58-63. PMID:
18362686.
15. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.
J Physiol 2008; 586:151-60. PMID:
10.1113/jphysiol.2007.142109. PMID:
17991697.
16. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.
Cell 1999;98:115-24. PMID:
10.1016/s0092-8674(00)80611-x. PMID:
10412986.
17. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators.
Cell Metab 2005;1:361-70. PMID:
10.1016/j.cmet.2005.05.004. PMID:
16054085.
18. Mathai AS, Bonen A, Benton CR, Robinson DL, Graham TE. Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle.
J Appl Physiol 2008;105:1098-105. PMID:
18653753.
19. Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake.
J Appl Physiol 2008;104:1304-12. PMID:
18239076.
20. Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1.
Mol Cell 2001;8:971-82. PMID:
11741533.
21. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway.
J Biol Chem 2005;280:19587-93. PMID:
15767263.
22. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle.
Am J Physiol Cell Physiol 2010;298:572-9.
23. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.
J Appl Physiol 2009;106:929-34. PMID:
19112161.
24. Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle.
Am J Physiol Regul Integr Comp Physiol 2011;300:1303-10.
25. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease.
J Physiol 2012;590l:1077-84. PMID:
10.1113/jphysiol.2011.224725.
26. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, Soya H. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling.
J Appl Physiol 2012;113:1260-6. PMID:
10.1152/japplphysiol.00869.2012. PMID:
22936723.
27. Lee M, Soya H. Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.
J Exerc Nutrition Biochem 2017;21:52-7. PMID:
10.20463/jenb.2017.52.
28. Lee MC, Rakwal R, Shibato J, Inoue K, Chang H, Soya H. DNA microarray-based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity.
Physiol Rep 2014;2:e12206PMID:
10.14814/phy2.12206. PMID:
25413326.
29. Ishihara A, Roy RR, Ohira Y, Ibata Y, Edgerton VR. Hypertrophy of rat plantaris muscle fibers after voluntary running with increasing loads.
J Appl Physiol 1998;84:2183-9. PMID:
10.1152/jappl.1998.84.6.2183. PMID:
9609816.
30. Legerlotz K, Elliott B, Guillemin B, Smith HK. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.
Exp Physiol 2008;93:54-62. PMID:
10.1113/expphysiol.2007.041244.
31. Neeper SA, Gómez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins.
Nature 1995;373:109PMID:
10.1038/373109a0. PMID:
7816089.
32. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus.
J Neurosci 2001;21:6706-17. PMID:
10.1523/jneurosci.21-17-06706.2001. PMID:
11517260.
33. Neeper SA, Gómez-Pinilla F, Choi J, Cotman C. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running.
Neurosci Lett 201;537:6-10. PMID:
23352660.
34. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment.
Neuron 2008;59:399-412. PMID:
10.1016/j.neuron.2008.06.023. PMID:
18701066.